\qquad Back Titration - Suggested Solution Date: \qquad
Reaction Equations:

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}+\mathrm{NaOH}_{(a q)} \longrightarrow \mathrm{NaCl}(\text { aq) })+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{NH}_{3}(\text { g) } \\
& \left.2 \mathrm{NaOH}_{\text {(aq) }}\right)+\mathrm{H}_{2} \mathrm{SO}_{4}\left(\text { aq) } \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4} \text { (aq) }+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right.
\end{aligned}
$$

Key Concepts:
known excess amount of NaOH added initially

amount of NaOH amount of NaOH that has reacted that has reacted with $\mathrm{NH}_{4} \mathrm{Cl}$ with $\mathrm{H}_{2} \mathrm{SO}_{4}$ in first reaction in second reaction i.e. unreacted excess amount of NaOH after first reaction.
Calculations:
Amount of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{50}{1000} \times 0.250=0.0125 \mathrm{~mol}$
Amount of $\mathrm{NaOH}=$ Amount of $\mathrm{H}_{2} \mathrm{SO}_{4} \times 2$
(unneacted excess) $=0.0125 \times 2=0.025 \mathrm{~mol}$

$$
\begin{aligned}
\text { Amount of } \mathrm{NaOH} \text { added initially } & =\frac{100}{1000} \times 1.00 \\
& =0.1 \mathrm{~mol}
\end{aligned}
$$

Amount of NaOH that has reacted with $\mathrm{NH}_{4} \mathrm{Cl}$
$=$ Amount of NaOH added initially - Amount of unreacted excess
$=0.1-0.025=0.075 \mathrm{~mol} \mathrm{NaOH}$
\therefore Amount of $\mathrm{NH}_{4} \mathrm{Cl}=0.075 \mathrm{~mol} \Rightarrow$ Mass of $\mathrm{NH}_{4} \mathrm{Cl}=0.075 \times 53.5$

$$
=4.0 \lg (3 \mathrm{~s} f .)
$$

"Experience Learning With A Difference

